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What HPC Will Look Like at NERSC in 2017



The Future Will Have Many-Cores

Disruptive changes are coming!

● If you do nothing, your MPI-only code may 
run poorly on future machines.

● NERSC is here to help



The Future Will Have Many-Cores

Memory

… Compute Units

No matter what chip architecture is in NERSC’s 2017 
machines, compute nodes will have many compute 
units with shared memory. 

Memory per compute-unit is not expected to rise. 

The only way that NERSC can continue to provide 
compute speed improvements that meet user need is 
by moving to “energy-efficient” architectures; tend 
to have lower clock-speeds, rely heavily on 
vectorization/SIMD.

Due primarily to power constraints, chip vendors are moving to “many-core” 
architectures:

Consumer/Server CPUs: 10’s of Threads per Socket 
Intel Xeon-Phi: 100’s of Threads per Socket
NVIDIA GPUs: 1000’s of Threads per Socket
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What users (and I) want

•Robust code changes
–I don’t want to add things in only to take them out 
again two years later

•Performance portability
–Changes made today for one platform should help 
on all



The many-core challenge for application developers 

For the last decade, we’ve enjoyed massively 
parallel machines with MPI as the standard 
programming method for exposing parallelism 
between nodes.

To study larger physical systems of interest, and 
get the most out of HPC resources, we now need 
to exploit “on-node” parallelism and manage 
memory effectively. 

The recommended programming model for Edison 
is already MPI (between nodes) and OpenMP on 
node.

Xeon-Phi
100+ hardware threads
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For the last decade, we’ve enjoyed massively 
parallel machines with MPI as the standard 
programming method for exposing parallelism 
between nodes.

To study larger physical systems of interest, and 
get the most out of HPC resources, we now need 
to exploit “on-node” parallelism and manage 
memory effectively. 

The recommended programming model for Edison 
is already MPI (between nodes) and OpenMP on 
node.

Porting to MPI+OpenMP on Edison, will position 
you for “many-core”

Xeon-Phi
100+ hardware threads



Vectorization

There is a another important form of on-node parallelism

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the 
above loop can be done concurrently.

  do i = 1, n
      a(i) = b(i) + c(i) 
  enddo



Vectorization

There is a another important form of on-node parallelism

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the 
above loop can be done concurrently.

  do i = 1, n
      a(i) = b(i) + c(i) 
  enddo

Intel Xeon Sandy-Bridge/Ivy-Bridge: 4 Double Precision Ops Concurrently

Intel Xeon Phi: 8 Double Precision Ops Concurrently

NVIDIA Kepler GPUs: 32 SIMT threads



Things that Kill Vectorization

Compilers want to “vectorize” your loops whenever possible. But sometimes they 
get stumped. Here are a few things that prevent your code from vectorizing:

Loop dependency:

Task forking:

  do i = 1, n
      a(i) = a(i-1) + b(i) 
  enddo

  do i = 1, n
      if (a(i) < x) cycle
      if (a(i) > x) … 
  enddo



NERSC is committed to helping BES

Help transition the NERSC workload to future architectures by 
exploring and improving application performance on manycore 
architectures.

Phase 1:
➔ Identify major algorithms in the NERSC workload. Assigned 

14 codes to represent class. 
◆ BES Codes: 

● Quantum ESPRESSO/BGW (DFT Proxy)
● NWCHEM (Quantum Chemistry Proxy)
● Amber (MD Proxy) 
● Zori (QMC Proxy)

➔ Profile OpenMP/MPI scaling and vectorization in key kernels 
on GPU testbed (dirac) and Xeon-Phi testbed (babbage).

Phase 2:
➔ Organize user training around OpenMP and vectorization.
➔ Meet with key application developers / workshops
➔ User accessible test-bed systems.

Lattice QCD

Density 
Functional 
Theory

Fusion 
PIC

ClimateQuantum Chemistry
QMC

Fast Math
CMB

Bioinformatics

Molecular 
DynamicsFusion 

Continuum

Other 
codes

Accelerator PIC

NERSC Workload 
By Algorithm



NERSC is Here to Help

Nick Wright  (Co-
Lead)
Amber (Proxy for 
NAMD, LAMMPS)

Katerina Antypas
(Co-Lead)

Harvey Wasserman
SNAP (SN transport 
proxy)

Brian Austin
Zori (Proxy for 
QWalk etc.)

Hongzhang Shan
NWChem (Proxy for 
qchem, GAMESS)

Jack Deslippe
Quantum ESPRESSO 
/ BerkeleyGW (Proxy 
for VASP, Abinit)

NERSC is kicking off an “Application Readiness” effort. Devoting significant staff effort to help users 
and developers port their codes to many-core architectures

Woo-Sun Yang
CAM (Proxy for 
CESM)

Helen He
WRF

Matt Cordery
MPAS

Kirsten Fagnan
Bio-Informatics

Aaron Collier
Madam-Toast / 
Gyro

Hari Krishnan
Vis.



Case Study



Case Study: BerkeleyGW

Description:

A material science code to compute 
excited state properties of materials. 
Works with many common DFT 
packages.

Algorithms:

- FFTs (FFTW)

- Dense Linear Algebra (BLAS / LAPACK 
/ SCALAPACK / ELPA) 

- Large Reduction Loops.

Silicon Light Absorption vs. Photon Energy 
as Computed in BerkeleyGW



Failure of the MPI-Only Programming Model in BerkeleyGW 

★ Big systems require more memory. Cost scales as Natm^2 to store the data.

★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and 
each MPI task has a memory overhead.

★ On Hopper, users often forced to use 1 of 24 available cores, in order to provide MPI tasks 
with enough memory.  90% of the computing capability is lost.

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

…



Steps to Optimize BerkeleyGW on Xeon-Phi Testbed

Time/Code-Revision

1. Refactor to create hierarchical set of loops to be parallelized via MPI, OpenMP and 
Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.
3. Make sure large innermost, flop intensive, loops are vectorized.

(4 Sandy Bridge)

(4 Xeon-Phi)



Steps to Optimize BerkeleyGW on Xeon-Phi Testbed

Time/Code-Revision

1. Refactor to create hierarchical set of loops to be parallelized via MPI, OpenMP and 
Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.
3. Make sure large innermost, flop intensive, loops are vectorized.

(4 Sandy Bridge)

After optimization, 4 
early Intel Xeon-Phi 
cards with 
MPI/OpenMP is ~1.5X 
faster than 32 cores of 
Intel Sandy Bridge on 
test problem.

(4 Xeon-Phi)



Running on Many-Core Xeon-Phi Requires OpenMP Simply
To Fit Problem in Memory

★ Example problem cannot fit into memory when using less than 5 OpenMP 
threads per MPI task.

★ Conclusion: you need OpenMP to perform well on Xeon-Phi in practice

Fail
to

Run

See poster for details.

BGW On Intel Xeon Phi



Improvements for Many-Core improve your Code on Hopper.

12 MPI Tasks/Node on Hopper 
(Requires > 2GB per MPI Task).

Speed-Up on Hopper Largely 
Due to Addition of OpenMP 
Support
                  

24 MPI Tasks Per Node. 

Speed-Up on Hopper Largely 
Due to Vectorization and 
addition of Parallel-IO          
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Improving your code for advanced 
architectures can result in 
performance improvements on 
traditional architectures.



Conclusions and Lessons Learned



Summary

➔ Disruptive Change is Coming!

➔ NERSC is Here to Help

➔ Good performance will require code changes
◆ Identify more on-node parallelism
◆ Ensure vectorization for critical loops

➔ The code changes you make for many-core architectures will improve 
performance on all architectures.



NERSC is Here to Help

But We Need Your Help Too….

Let us know the preparation status of the codes you use. Let us know which 
developers to get in touch with and what features are important to you.



National Energy Research Scientific 
Computing Center



Hybrid OpenMP + MPI For Distributed FFTs in DFT Minimizes 
All-to-All Communication Costs

Figure courtesy of Andrew Canning. Test on Jaguar, OLCF.

Hybrid (OpenMP/MPI) reduces MPI communication costs 
over pure MPI implementation.

Paratec Runtime: FFT: 3dFFT      “DGEMM”: all non-3dFFT parts of code   MPI: sum of all MPI comms.



Blank Slide

Blank Content


